Remanence enhancement in composite magnets of micrometre $\mathrm{Sm}-\mathrm{Fe}-\mathrm{N}$ grains and nanometre Fe particles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys.: Condens. Matter 82243
(http://iopscience.iop.org/0953-8984/8/13/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.208
The article was downloaded on 13/05/2010 at 16:28

Please note that terms and conditions apply.

Erratum

Remanence enhancement in composite magnets of micrometre $\mathrm{Sm}-\mathrm{Fe}-\mathrm{N}$ grains and nanometre Fe particles
Jifan Hu and Zhenxi Wang 1995 J. Phys.: Condens. Matter 7 8655-8658

Unfortunately figures 1 and 2 in the printed version of this article showed the dependence of the remanence and coercivity, respectively, on the weight composition x for composite magnets $(\mathrm{Sm}-\mathrm{Fe}-\mathrm{N}){ }_{1-x} \mathrm{Fe}_{x}$ rather than the dependence on the atomic composition x for $(\mathrm{Sm}-\mathrm{Fe}-\mathrm{N})_{100-x} \mathrm{Fe}_{x}$, as stated in the captions. The correct figures are given below.

Figure 1. Dependence of the remanence on x for isotropic composite magnets ($\mathrm{Sm}-\mathrm{Fe}-$ $\mathrm{N})_{100-x} \mathrm{Fe}_{x}$ prepared by directly mixing micrometre $\mathrm{Sm}-\mathrm{Fe}-\mathrm{N}$ grains with nanometre Fe particles and micrometre Fe particles, respectively.

Figure 2. Dependence of the coercivity on x for isotropic composite magnets ($\mathrm{Sm}-\mathrm{Fe}-$ $\mathrm{N})_{100-x} \mathrm{Fe}_{x}$ prepared by directly mixing micrometre $\mathrm{Sm}-\mathrm{Fe}-\mathrm{N}$ grains with nanometre Fe particles and micrometre Fe particles, respectively.

